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The prewar paper in concerned with the problems of optimal control of one-dimensional 
&id flows, when one of the chsractaristic velocities (velocity of propagation of weah 
dfmontfnoitiea paasee throagh aero. We know [I] that the point at which the characteristic 
velocity ohaages its dgn, is the sfngdar point of the system of differential equation8 
den&b&g the ffow. We find that the system of equations for Lagrange multfpltera which 
is obtained in the coarse of optimiring such flows, also haa a singularity at the point at 
which the characteristic velocity becomes zero. Consequently, a problem arfsss of obtain- 
ing an anambiguoas choice of the Lagrange mnltipliers at the singularity. 

Below we ethow that the Lagrange maltiplier~ in the optimal solution ehoald be conti- 
ntlortr~ and boanded, when paesing throogh the singlarity. The results obtained are illastrat- 
ad by an example dealing with optimization of a magnetogasdynamic electric power generator, 
whersthe flow takes place continuously under the velocity of sound conditions. 

1. Let ua consider an arbitrary, one-dimensional steady flow of a continuous medium. 
We shall assume that, within the parametric space under consideration, one of the character- 
istfa velocities obtained from the corresponding equations for a unsteady flow, becomes 
so at some point. In this case we may write the equations for the steady flow of a conti- 
naoas medium in their normal form, an 

YI’ = %-’ f (2, Yk, Ui), !lj’ Lo g; (2 , gk, l,‘J (1.1) 

(i = 1,. , .,nt; k= 1,. . . , n; f =L’, . . . ,n) 

Here x ir the coordinate coinciding with the direction of the velocity of flow, yi de- 
notea the flow parametera such as e.g. velocity, presamre, density of the fluid, induced 
magnetic field strength, concentration of the components of the medium, ctc; yr is the 
parameter proportional to the charactariatic velocity which, by definition, changes its sign 
(for the gaBdynamic problema, it is convenient to choose yl = M - 1 where M is the Mach 
number) and uf denote vnrfoas controlm such aa, form of the channel, intensity of applied 
magnetic field, electric potential difference etc. 

We aseams that uf are fanationa of x and a prime denotes derivatives with respect to x. 
We have shown in [l] that the above form of the steady state solotion is feadble. 

Suitabla choice of the indepandant varfablaa may lead to the form, where only one of the 
equations will contain a singalarfty in itn right hand side, while the remaining equationa 
will be finite at the aingalar point. 

The singular point of (1.1) can be determined by the following conditiona 

f (X, yk, Vi) =- (), y1 = 0 (Ii=l,...,n; i=lv~**rm) (1.2) 
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and it will lie on au (a - I)-dimm~aional surface in the (a + l)-diarensional variable apace, 
where the variables are a, yl, . . . . 
lie on a two-dimensional plane 111. 

ya. In the neighborhood of this point the integral curvoa 

The character of the singularity can be found, in the usual manner, from the cosffici- 
enta of the linear axpanclioa of the right-hand aidea of (1.1) near the aingulaz point. 

Secular equation defining the eigenvalaea & has the form 

(1.3) 

where f f , f v and fvi are the corresponding partial derivatives and repeated indices 
(i, j) de~ot~~u~m~tion. Relation (1.3) yields 

hl,, = ‘/a If,, f i/fag, + 4 tf, + fgfj + fr,'i)l (1.4) 

Characteristic direction cosines at the singularity are of the same magnitude as the 

eigeuvalnes 
Yl’ = Al, 2 (1.5) 

In the earlier paper [I] we discuss in detail, how the sign of h, and & influencea the 
character of the singularities. Eere, we shall only concern ourselves with two typea of 
singularities, near which the flow is ateble [l]: a node with negative eigenvelaes 
(h, < 0, h, < 0) and a saddle point (& > 0, & < 0). 

Before integrating the ayatem (1.1) over e ffuite segment [a, b] of the x-da, we mttat 
specify the boundary conditions. It follows from [Z], that at x = a the namber of tlteae 
conditions is equal to the number of the positive ckuaeteriatic velocities, while at a = b, 
it equals to the number of the negative characteristic velooitiea at that point. 

When tJ~e characteristic velocities maintain their sign over the considered interval of 
integretion, then the total number of the left rod right boundery conditions is equal to n. 

If, on the other hand, the characteristic velocit (in this case yl) changes its sign on 
passing through a node at some interior point X* E ‘f a, a], then we have an additional 
boundary condition at x = b, since yI > 0 when x 6 a and yt < 0 when x = b. 

Thus, when a singularity of the node type exists, Eqa. (1.1) have (n + 1) boundary con- 
ditions which can be written as 

cPi(a, Y&t)=O (i=~r..-,r), 9j @, Ykb) = o fi = r + 1, . . . , n + i) 

(k=l>...,4 (~4) 

Here I denotes the number of the positive characteristic vaiocitfea at x = a, (a + 1 - r) 
is the number of the negative cJraracteriatic velocities at x = b, Vi a& $ ;111e some known 
functions, while yko I 

and ykb denote tJae values at the points 5 end b respectively. 
We assume that the boundary conditions (1.6) are such, that the integral curve with 

negative yi T reaches the node, otherwise the flow corresponding to the conditiona (1.6) 
exhibits e shock wave. 

When a solution passes through e saddle point with positive yr ‘., then for a = a and for 
x Ib. we have (a - 1) boundary for conditiona, since y,. < 0 when x - a and y, > 0 when 
a = b. These conditione can also be written in the form of (1.6), by patting / - I + 1, . . ., 
n - 1. In this case (1.2) should be used es aa additional relation, in order to obtain the 
aolation. 

When a solution passes through a saddle point with negative yt’, the number of the 
boundary conditions is 61 + 1) just as in the ceae of the nodu, and we have a correapond- 
Jng set of solutiona with ~aconti~nitiea a3] gJ vea a good illustration of the above argument). 
To obtain a continuous aulation pusfng through a saddle pofnt with yt ‘< 0 we moat reject 
one condition on each aide and dentaad, that (1.2) hoIda. Thus, when a solution paa~aa 
throagh a saddle pofnt, we have (a - 1) conditions at x 1; a and a I b, and the condition (1.2). 



364 F. A. Slobodkina 

2. Let 08 now find the optimal control0 vi(r), i.e. sach controls, that the fnnctional 

b 

J = 
1 

cn (x9 Yk, vi) ds (k = 1, . . . , n; i = 1, . . . , m) (2.1) 
a 

a#aames it6 maximum valne and the qnantities X, yk and VI are connected by the differ- 
ential Eqa. (1.1). 

Fnnction @ (x, yk, uf) is assumed known and continaons, together with its first order 
partial derivatives. Arbitmry, piecewise continuous functions with first order discontinoities 
at a finite number of points on the interval [a, b] will be considered as admissible controls, 
and we shall also assnme that the controls uf will have constraints soch as e.g. 

I vi I < vi (i = 1,. . . I m) (2.2) 
imposed on them. These constraints will either be connected with the boundaries of ap- 
plicability of (1.11, or will relate to the technical structure of the control itself. The 
qnantities Vf in (2.2) are hown constants. Let ns constrnct an anxilliary functional 

(k = 1, . . ., n; i = 2, . . ., n; i = 1, . . ., m) (2.3) 

Here PI d /~j sre the variable Lagrange multipliers. Admissible variations of the 
fnnctionals J and I coincide, since Eqs. (1.1) are satisfied. 

We shall only consider two possible types of solutions of (1.1) in which the character- 
istic velocity yr changes its sign when the corresponding integral carve passes throagh the 
singnlarfty of the (1) node type and (2) saddle point type. We assnme that the chuacter of 
the singnlar point does not change nnder the admissible variation. 

Let as subdivide the interval of integration [a, b] into segments over which the controls 
of fx) are continnoos, and into segments, over which yt (x) has a constant sign. 

To obtain all the necessary conditions, we need only consider a single point of dis- 
continnity of the controls uf and a sin le point at which yr changes its sign. We shall as- 
some that the ends of the interval [a, b are not fixed. Let us find the first variation of I, Bl 
tahing into acconnt the fact that /I% and ~j are continuous at the points x = d where the 
controls become discontinaons, while y k (ti) fk = 1, . . . . n) are continaoas at the singular 
point x - x+ 

(2.4) 

+ H,’ (2’) Ip, (x+*) - ps (T-*)1) 6x* + p1 (r_*) 6Yl_* - IL1 (~+‘PYl+* + [cl, (z-*) - 

- pLk (r+')l6y,* Ar {Q (“(j-1 - @ (“d+) - pLs (“J [Y,' (“d-1 - Ys' (“&)I) 62, + 

+ Ps (b) 6Y,, - I”, (a) b,, + IQ, (b) - Y,' (b) Psr(b)l 6z, - I@ (a) - Y,' (a) CL8 ta)l hr, 
(i=l,..., nz; j, k=2, . . ., a; s=l,. . ., n) 

Here cD”i, @y,~ @ukv fCifv,v fvk9 gj,,, gjy,T and gj,, w the corresponding partial de- 
rivstfves of @, f and g , the sabscripts s b andd mfer to varhtions at s = O, x = b aml s = d, 
and the uteria dudtes the aasntitiea’st the sin&r point. -01s 
y,’ (z_) [Q (z,), wS !z+), VS’ (x+)1 

@ (x_), pr (x,), 
ideate that the relevsat qaantitfes ue compated to the 

left [rfght] of the oorrespondfsg x. 
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We shall choose the Lagrange mnltipliem in each a manner, that only the variations 
of controfs remain in fZ.Q, aad we shall show that it can be done for any d&on of (1.1) 
considered here, by choosing /.t, and /Q such. that 

(2.5) 

holds on the intervals over which the qaantfty yX does not change its sign. 
To integrate (2.5), we must select the boundary conditions whose form will depend on 

the character of the solution of (1.1). 

3. It follows from (2.5), that the equations for Lagrange multipliers have a singularity 
at the point where y1 vanishes. This raises the problem of nnambigaoaa selection of pl and 
pi at the sing&&y. The feasibility of conatraeting a nniqne solution for the Lagrange 
maltipifera can be inferred from the boundary conditions (1.6) for the system (l.l), from 
the terms outride the integral sign at the points a, b and zr+ in the expression (2.4) and 
from the character of the singularity of the system (1.1) and (2.5). 

Let us consider a solution of (1.1) paseing through the node, when conditfons (1.6) 
hold at the ends a aad b of the segment. Varying the right hand sides of (1.6), we obtain a 
system of (n + 1) linear algebraic equations in 8yko, &o, &kf, and &,(k I 1, ,.., n) 

Solving this system for r v&es for 8y 
4” 

md (n - I + 1) valuer, of &kb and inserting 
the reads into (2.4) we obtain, after rednc ag the like terma, fn - r) arbitrary variations 
8ykafor#=oaad(r- 1) arbitrary varfationa b&f, for x = b. Eqaating the coefficients 
precedfng these variations to zero, we obtain (n - I) boundary conditions necessary for 
the integration of (2.5). (n - r) of these conditions referring to x = 4, and the remaining 
(r - 1) conditions referring to x = b. Equating to zero the coefficients preceding &, aad 

&,, we obtain the conditions defining the positions of the enda of the intervaI of integra- 
tion. We can easily see, that the nmaber of conditions is inaafficiaat to integrate the 
system (2.5). 

Let UE now consider the solution of (1.1) passing through a saddle point. In this case 
the conditions (1.6) hold at o and b, but j = r + 1, . . . . n - 1. Repeating the argamsnt given 
above we obtain, for (2.5), (n - r) conditions for r = 4 and (r + 1) conditions for x = b, i.e. 
together (n + 1) conditions. 

Let us now introduce another variable c -k/yl. Then (2.5) can be written as 

P’ = Yl-’ tcl,v, - P fi_ix - Pjjb”i*J* Pkl = @vi, - Pfy,, - PjLja"ju,. 

(it k = 2, . . . , n) (3.1) 
We can saaiIy see that the ringalarity of the ayatem (1.1) and (3.1) is defined by 

f @, Yk, &) = Ov Yl = O, a;>, - P f j/a - PjtYj 2/i -‘ 0 (3.2) 
Using the old variables we would find, that the last eqaation fa (3.2) is ,ul = 0. 
Since the right-hand aides of eqnatfona for the derivatives yi aad pi (f = 2, .,,, n) are 

finite naar the singularity we fiad, that only fimt Eqa. of (1.1) aad (9.1) are eaaeatial for 
investigation of the chamcter of the aingalarity. Introdociag differentiation with respect 
to t, we caa write these equations in the form of an independeat system. and linsariring 
their right-hand aides near the singularity, we obtafn 
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?I,* = f&AYl+ ff* + f,* y i ’ 4 fVjQ Ax 

xl = AY,, I-+ =t ~AYI + PAX - f!,,b 
Where byi, I?Lc aad 

sia(lpluity, while aaad Y 

are the incmnanto of the corresponding qaantities near the 
are the ooafflcieata of expandon of the namerstor of the right- 

haad sida of the sqaation for p : Namerioally, aand flare not ssseatial, 
Efgeavslues of the slagalarfty are. in this case, gfven by 

r- n cr,, - h)-_(f, -t f*tUi’+ f*jgj)l (-_I,,-3L) = O (3.3) 
from. whfoh we find that & and 11 are determined by (1.4), while 

A3 = - fvr (3.4) 
Sol&ion for Ayi, d+- and &t has the followiag form near the ~~la~ty: 

byi= f c&, exp h,t +:c,h, exp h,t, dx = c1 exp h,t i- cz exp kt 

k = ~1 (P - Ala) & -i- fJ1 =P kt + cp (B - h,a)(A, V f,,)-1 PX~ h,t + C, i3xp h,t 

where cl, cf md ca are arbitrary coastaats, 
If the singularity of (1.1) ia a node, than & < 0, X, < O’aad & > Su Then (3.4) yieIde 

&>O. 
Oa approaching the singalarity 6 + ~1, we have 

Ay, * exp h,lt, AZ CI, exp &t* A#t * exp &t 
Behavior of gL = cry, is governed by the term erp (& + &))t. Siace 4 c & > 0, we have 

/.L% -+QQ, when t-r-. 
This means that the sing&r&y given by (3.21 is a generalized saddle point end &% = 0 

correapoads to continnoue aolations passing throagh it. 

If the system(Ll a saddle point ae a singular&y, then 4 > 0 sod & < 0. Suppose 
that at the sme time f 
the slng&rity as t -, 2: 

< 0. Thea (3.4) yields h, > 0. In thfs cast wefhave, on approacbfng 

Ayt - erp Q, Ax M exp h,t, Ap - exp l,t (Cl 7 0) 

Since the behavior of /.tl is goraraed by the term exp & + &I:, & + & < 0 implies that 
hl + 0 as t + 00. On approaohing the aiagalarity a~ t + - m, we have 

AYE - exp &t, AZ - exp hc, AEI, - exp &t or exp h, t (c* = 0) 

Thaa pl - exp & t or exp (& + h&, hence k + 0 us t + - OQ, Thus we see 
&at, if the sfagalarity of (1.1) is a node then pr + 00 on approaching the sing&a&y, while 
in the 4ase of a saddle point we have &I + 0. 

Let us sow coasfder the tenaof(2.4) oatside the integral s&, whsD x=x*. 
Since the singalar point of (1.1) I!es on a (n - I)-dimensional surface, 8yjw fj t 2,,..,n) 

are arbitrary and oonseqrrently Q (xs_) = gj (x*$ (j = 2, . . . , n). 
We shall take a amali arqa around the singfarity of (1.11 end draw within it a straight 

line perpendicular to the x-axis and lying in the pfana containing all intagral curvee of the 
system (1.1). Than, in the case of a node, this straight line will be intersected by a set oi 
integral 4urves passing through tha singularity and tbs qaantity yl will vary within the 

limits o<lYrll<lIl 8, whera k is tbc radius of the area and & is given by (1.4) 
where the root should be taken with the minus sign. Conseoaently, if within the e-neighbor- 
hood of the siagaladty 0 < 1 ylk 1 < 1 A,, 1 8, then 6y,+* is arbftrafy and 

PLr k_:*) = P1 (%*) = 0 (3.5) 
i.e. the Lagrauge maltlpiiers should be conttnaons when passing throagh the siagnlarity. 
Condftfon (3.5) sappiemants the conditions for imtegmtfon of the aystm (2.31, when the 
Eqs. 11.1) have the node as a ~fngalarky. 

If y, resohes its Iheft vafas withf n the 8aeighborhood, then the supplementary condition 
for integration of (2.3) WitI be 



Optitnirutfon of ondhsmrfonal flow8 367 

Yl w Ilt 4 = -t; i h 1 E (3.6) 

In this case the qnantities !% (+*) will be arbitrary. When (3.6) holds, it is 

advisable to take into consideration the flows wfth shock waves or with yt of constant *fg, 
since an sztremam may occw within this claes of flows. 

If the singnlarity defined by (1.2) is a saddle point, we have one integral curve with 
y : (9 ) 3 0 sud one with y ; (XI ) < 0 pansing through the oingnlarity, and we then have 

Srr* + = 0. Conmqaently the qaantities @I (z_*) and F @+*I are arbitrary. We know 
however, from actual analysis, that ptt + 0 as x + fl when the singularity is a saddle point. 
Thos the condition of continuity of the Lagrange multipliers is, in this case, satisfied 
automatically. 

Let us now assume that the optimal controls suffer a diacontinoity at the point at 
which yt vanishes. In this case the bonndary conditions for integrating (2.5) can be chosen 
analogously to the cane of the saddle point type singnlarity, since two integral curves of 
(1.1) pass through x = xa where yl = 0, snd they have y ; -+ fm as yl -B 0. From (2.5) it 
follows that, when yt + 0 (x -+ x* ), 

111 = c (x - x*)‘!z (3.7) 

where c is sn arbitrary constant. Expression (3.7) was obtained tsking into account the 
fact, that 

(!&I2 = 2f (s,*) (z - s*) 

Thus ,~t -) 0 as z + z’, i.e. the Lagrange multipliers are in this case continuons. 

4. In agreement with the choice of Lagrange moltipliers, the first variation is 

6J=Si= bi ;ijqi - % (4.1) 

- P, @-d) [?fs’ (“h-1 - ?/,’ &+)I} &Ed (i--l I.. .I m; j=2 ,...,n; s=l , * . .t f&l 

Neceeaary conditions for an extremnm can be obtained by the usual methods, with 
(2.2) taken into account. 

If the controls are optimal, then any admissible variation will only lead to the de- 
crease in the value of I, i.e. 6 I < 0. Assuming that the admissible variations 6 vf can 
have any sign within the intervafs /vi/ < Vi, negative on vi = S Vi and positive on 

vi = - Vi, we obtain the necessary conditions for the maximum of J, 

Fi = qi - pdri 1 z/l - kj&& = 0 (I l’i I < Vi) i=l,...,m 
F, > 0 (“i = v,), Pi<0 (vi=-Vi) i=2,...,n 

(4.2) 

and theae conditions deffna the optimal controls. 
Position of the point d at which the controls suffer a discontinuity, is gives by the 

condition 

‘D (%) - @ (xd+) - ps (~d)b’s trd-) - ?/‘s (rd+)l = (1 (s= 1, . . .) n) 

Other terms outside the integral may appear in (4.1). They will be the ontcome of the 
fact that some of the quantities yka and y&b as well as the length of the interval of 
integration, may serve as controls. Optfmal conditions for yko and ykb 611 replace 8-e 

of the conditions (1.6) as boundary conditions for (1.11, and the optimal conditions rt a 
and b will define the position of the ends of the interval of intagrstion. 

5. As an example, we shall consider the problem of optimizing the flow in the 
cbsnnel of a magnetohydrodyzamic electric power generator. The statement and the aolation 



368 F.A. Slobodkina 

of this problem for subsonic and suptrsonie flows and the flows with shock waves, are 
given in [4 and 51. Here we salve the problem under the assrrmptione of f41, but the flows 
considered will be trausonic and passing through the velocity of sound at a singularity of 
the nodal type. Qualitative analyeis [3] and numerical compotatian have shown, that such 
a flow is ponsible in a diverging channel when the interaction parameter A 1 1.5, Rere - 
A = oS”Bmalo / (p8” l/2&“) where ~0, is the density, h; is tba enthalpy, a,0 ia the 
conductivity of gas in the receiver while BmQ and lo represent the typical magnetic field 
and the typical length respectively. 

Qne-dimensionaf steady flow of E nonviscoa~, non-heat-oondacting perfect gas whose 
electrical conductivity is Cro in a plane channel of height 2ye and in the presence of an 
external magnetic field B” (msgnetic Reynolds numbers are assumed low), can ba described 

by 

Notation used in IS] is adopted here. Let na put UE 1. Then (5.1) can be reduced to the 
form 

dY M 2+(x-QM” 
-=-f- 
dr 2 2-&p x (5.2) 

which is more suitable for obtaining a numerical solution of the problem and where M 
denotes tha Mach number. 

Singular points of (5.2) in the ruM-crpacs lie on the plane M p: 1 and on the line given 

by 

Wheu A 2 1.5, one of the branches of this line conaiata of the nodes with nagative 
characterirtic direction8 131. 

Ausaming that the flow ia supersonic at the inlet and that the inlet croao section y,” 
of the channel is fixed, we caa determine r$, and M, at x = 0, by considering the flow for 
x < 0 and asmdng ft Jmc~n. The quantity ao (or 4f$ can, in this case, be assigned 
ubitruy vahes within smme limiter imposed by the change of the form of the ohauuel when 
x < 0. Under the open cycle working condition of the generator, the presmure pm of the 
medium into which the fluid emerges, ia arrsomed known at the outlet cross sedan. Thus 
we have, for (5.21, 

The power available from the anit width of the generator 
Xh 
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cam be taken aa the optimiafng fonctfonal, and the optimal controla should satisfy the 
COBStrafBta formnlated in [4] (see Formulas (1.3), (1.6) and (1.8) f. 

We shall write the anxilliary functional [4] in the form 

Necessery conditions for the maximum of I obtained in [41 for (r t 1, are valid for the 
present problem. The latter differs from the earlier problems OBly in the formulation of the 
boundary conditions for (5.2) and in the equations used to obtain the Lagrange multiplfera~ 

Since the singular point of (5.2) is a node, then for the integ~tion of the system 

dti IAB 0.M + PZ’P + cp) + PICY’ I PI @ - 4) M” 31 % 
-= 
dx (1 - iv) tic 

-- 
t dx 

--- f!@ (5.4) x-luy dx 

oBe of the boundary condition is obtained from the requirement that the Lagrange multipliers 
are continuous at the aingnlar point 

AB Q.t,B f paq + cp) + plcy’ I y2 = 0 (I = x*) (5.5) 

while the second condition is obtained, as in [4], by considering the terms outside the 
integral sign for % = %b, in the expression for 61 

ILI=-(~I~--I)uYp!z (1: z Tb) (5.6) 

Factor pt is not aabstantial in the present problem. 

for 
Optimal values of R (x), y (%), Cp = COllSt, pm and %b were foond by numerical methods 
c 3 4, x =: s/3, and 1.5 5 A 5 2. The largest admissible angle of inclination of the 

channel wall to the %-axis was chosen as 20°, the ratio f”/yt = 10 and the maximum hefght 
of the channel wae Y = 4.64. No constraints were imposed on q . Velocity of the gas at the 
inlet was assumed equal to the sound velocity. 

Optimal value of 4~ = const can be found from the formula (3.12) of [41, or from the 
equivalent differential equation 

dx 1 dx = A [(I + IL,) (uB - cp I Y) - QA,B -t I”~‘P + cp) y-l1 
with the boundary conditions 

x (0) = x (Xb) = 0 

(5.7) 

(5.8) 

i B 

f 
cl75 

~ 

Choice of tp leads to fnlfilment of one of these 
conditions. Thus we must solve the bollndary value 

t 
problem for five differential Eqa. (5.2), (5.4) snd (5.7) 

i 
with the following boundary conditions: (5.3), fS.S), (5.6) 

I and (5.8). 

0.5 t* 
0.5 

The equations were integrated by the Ronge - Kotta 
1 method from x +L 0 to x = %‘@ and from x = %f, to % = %*, 

and x was taken as the independent variable only whso 
Fig. I IJf ‘I < 1. When Ihf’l 2 1, then M was used as the fndc 

pendent variable. 
The lacting boundary conditions cc1 (0) and pa (0) required when integrating from 0 to x” 

and C(I (% 4 ) with or, (x ) when integrating from %b to x* as well as’rp, were selected by mearta 
of approximations wf % respect to five parameters aBd using the Newton’s method. 

Equations (5.4) were linearized in the smell neighbourhood of the aingalar point, aBd 
the choice of this particular method of integration was dictated by the necessity of obtsfrt- 
ing a stable solution near the node. 

Computationa have shown that Y (2) = kz + 1, (k = %zO”~” / Y,“), and %a = 1 are 
optimal, while optimal B (%) conaiata of the segments of the boundary extremum 8 = 1 
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together with the segments of the two-sided extremnm. Fig. 1 shows the optimal B (x) for 
A=2. 

We have also computed, for comparison, the power of the generator at B = 1 with the 
remaining optimal parameters. We found, that the power of the generator at the optimal 
value of B (2) exceeds that at E = 1 (A = 2) by 8.3 %. 

The author thanks A.G. Kulikovskii for valuable advice. 
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