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The present paper is concerned with the problems of optimal control of one.dimensional
fluid flows, when one of the characteristic velocities {velscity of propagation of weak
discontinuities passes through zero. We know [1] that the point at which the characteristic
velocity changes its sign, is the singular point of the system of differential equations
describing the flow. We find that the system of equations for Lagrange multipliers which
is obtained in the course of optimizing such flows, also has a singularity at the point at
which the characteristic velocity becomes zero. Consequently, a problem arises of obtain-
ing an unambiguous choice of the Lagrange multipliers at the singularity.

Below we show that the Lagrange multipliers in the optimal solution should be conti-
nuous and bounded, when passing through the singularity. The results obtained are illustrat-
ed by an example dealing with optimization of a magnetogasdynamic electric power generator,
wherethe flow takes place continuously under the velocity of sound conditions.

1. Let us consider an arbitrary, one-dimensional steady flow of a continunous medium.
We shall assume that, within the parametric space under consideration, one of the character-
istic velocities obtained from the corresponding equations for a unsteady flow, becomes
sero at some point. In this case we may write the equations for the steady flow of a conti-
nuous medium in their normal form, as

yi = (e gk, vy), ¥ = g iy v (1.1)

(izil---)'n; '-"—-"1,._.,”; }A=3,...,n)

Here x is the coordinate coinciding with the direction of the velocity of flow, y; de-
notes the flow parameters such as e.g. velocity, pressure, density of the fluid, induced
magnetic field strength, concentration of the components of the medium, etc; y, is the
parameter proportional to the characteristic velocity which, by definition, changes its sign
(for the gasdynamic problems, it is convenient to choose y, =M — 1 where M is the Mach
number) and v; denote various controls such ss, form of the channel, intensity of applied
magnetic field, electric potential difference ete.

We assume that v; are functions of x and a prime denotes derivatives with respect to x.

We have shown in [1] that the above form of the steady state solution is feasible.
Suitable choice of the indespendent variables may lead to the form, where only one of the
equations will contain a singularity in its right hand side, while the remnining equations
will be finite at the singnlar point.

The singular point of (1.1} can be determined by the following conditions

Fa o) =0, m=0 (=1 ,m i=f...,m (1.2)
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and it will lie on an {n = 1)-dimensional surface in the {n + 1)-dimensional variable space,
where the variables are x, yy, ..., ¥,. In the neighborhood of this point the integral curves
lie on a two-dimensional plane [1].
The character of the singularity can be found, in the usual manner, from the coeffici-
ents of the linear expansion of the right-hand sides of (1.1) near the singular point.
Secular equation defining the eigenvalues A, has the form

f?h_;\' /x+'fng}'+jl"ivi’k:0 (221""' m) (1.3)

1 —% }'=2,...,n

whers f,, {, .+ fyj and f,;; are the corresponding partial derivatives and repeated indices
{i, /) denote sunimation. Relation {1.3) yields

o=ty £ VI, 40+ 8+ 2] (1.4

Characteristic direction cosines at the singularity are of the same magnitude as the
eigenvalues ,
yl =1 ;\,1’ [ (1 .5)

In the earlier paper {1] we discuss in detail, how the sign of A, and A, influences the
character of the singularities. Here, we shall only concem ourselves with two types of
singularities, near which the flow is stable [1]: a node with negative eigenvalues
(A <0, A, <0) and a saddle point (A, > 0, A, <0).

Before integrating the system (1.1) over a finite segment [a, 4] of the x-axis, we must
specify the boundary conditions. It follows from [2], that at z = a the number of these
conditions is equal to the number of the positive characteristic velocities, while at a = b,
it equals to the number of the negative characteristic velocities at that point.

When the characteristic velocities maintain their sign over the considered interval of
integration, then the total number of the left and right boundary conditions is equal to n.

If, on the other hand, the characteristic velocity (in this case y,} changes its sign on
passing through a node at some interior point x* EEFG. bl, then we have an additional
boundary condition at x = b, since y;, > 0 when x = o and , <0 when x = b.

Thus, when a singularity of the node type exists, Eqs.(1.1) have (n + 1) boundary con-
ditions which can be written as

i (@, Yra) =0 (i=1,...,1) Vi, yr) =0 (=r+1,...,0+1)
k=1,...,n) (1.6)

Here r denotes the number of the positive characteristic velocitiesat x =g, (n +1 - 1)
is the number of the negative characteristic velocities st x =, ¢; and {f; are some known
functions, while y, . and y;; denote the values at the points a and b respectively.

We assume that the boundary conditions (1.6) are such, that the integral curve with
negative y, “reaches the node, otherwise the flow corresponding to the conditions (1.6)
exhibits a shock wave.

When a solution passes through a saddle point with positive y,°, then for x = a and for
x =b, wehave (n ~ 1) boundary for conditions, since y, <0 when x = G and y, > 0 when
% = b. These conditions can alsc be written in the form of (1.6), by putting j=r+ 1, ...,

n ~ 1. In this case (1,2) should be used as an additional relation, in order to obtain the
solution.

When = solution passes through s saddle point with negative y, *, the number of the
boundary conditions is (n + 1) juat as in the case of the node, and we have a correspond-
ing set of solutions with discontinuities ({3] gives & good illustration of the sbove argument).
To obtain & continuons solution passing through a saddle point with y, "< 0 we must reject
one condition on each side and demand, that (1.2} holds. Thus, when a solution passes
through a saddle point, we have {n —~ 1) conditions at x = o and x = b, and the condition (1.2).
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2. Let us now find the optimal controls v; (x), i.e. such controls, that the fonctional

b
J:S(D(x,yk,vl)dx (k=11...yn; i=11...1m) (2'1)

assumes its maximum value and the quantities x, y; and v; are connected by the differ-
ential Egs. (1.1).

Function ® (x, Yk» vy) is assumed known and continuous, together with its first order
partial derivatives. Arbitrary, piecewise continnous functions with first order discontinuities
at a finite number of points on the interval {a, b] will be considered as admissible controls,
and we shall also essume that the controls v; will have constraints such as e.g.

i <Ve i=1...,m) (2.2)
imposed on them. These constraints will either be connected with the boundaries of ap-
plicability of (1.1), or will relate to the technical structure of the control itself. The
quantities V; in (2.2) are known constants, Let us construct an auxilliary functional

1@ by )

1 } -+ i [y — i (&, Yxs vi)]}d.q-

b
I= ;}{(D (@, Y, Vi) + M [le' —
k=1,...87=2,..,8i=1,...,m) (2.3)

Here y, and H; are the variable Lagrange multipliers. Admissible variations of the
functionals / and 7 coincide, since Egs. (1.1) are satisfied.

We shall only consider two possible types of solutions of (1.1) in which the character-
istic velocity y, changes its sign when the corresponding integral curve passes through the
singularity of the (1) node type and (2) saddle point type. We assume that the character of
the singular point does not change under the admissible variation.

Let us subdivide the interval of integration [a, 5] into segments over which the controls
v; (x) are continuous, and into segments, over which y, (x) has a constant sign.

To obtain all the necessary conditions, we need only consider a single point of dis~
continuity of the controls v; and a single point at which y, changes its sign. We shall as-
sume that the ends of the interval [a, g] are not fixed. Let us find the first variation of J,
taking into account the fact that u, and {j are continuous at the points x = d where the
controls become discontinuous, while y % (x*) (k =1, ..., n) are continuous at the singular
point x = x*

/e, (nf,, —1 )
81 = '\ [(ml’i T }ngjl.i) 6vi + (‘D!Ix — M T — B8y, — > Sy -+

a

(D, -y, 1 — By — OO A2 @EN— D@ (24)

+Fy () [y (3% — B (M 87* + (%) Oy ® — (2,7 )0yne* A By (22%) —

— By (€M) 8y, (D (24)) — D (54,) — By (5 [, (84.) — ¥, (54,)]) 824 +
+ 1, 08y, — b, (3) 8, + @ (B) — y, (B) b, (B)] 2, — [® (a) — ¥, (a) i, (a)] 2,

i=1,...m j,k=2,...,n,s=1,...,n)

Here @y, @, Dy, feify fupor Bivys Biy,» and gjy; are the corresponding partial de-
rivatives of @, fand g, the subscripts a, b and d Tefer to variations st 3= a, x = b and x = d,
and the asterisk dendtes the quantities at the singular point. Symbols ¥ (x_), u, (x_),
vs' (z) [® (z,), 15 (2,), ¥s"(2,)] indicate that the relevant quantities are computed to the
left [right] of the corresponding x.



Optimization of one-dimensional flows 365

We shall choose the Lagrange multipliers in such a manner, that only the variations
of controls remain in {2.4), and we shall show that it can be done for any solution of (1.1}
considered here, by choosing 1, and ;. such, that
(2.5)
ylfyl e ] fyk

T=Q, — —_ O, [ .
W=y — o W8 D ~G’y,‘,——my—l—u,'g;,,ﬁ G k=2,...,n)

holds on the intervals over which the quantity v, does not change its sign.
To integrate (2.5), we must select the boundary conditions whose form will depend on
the character of the solution of (1.1).

3. It follows from (2.5), that the equations for Lagrange multipliers have a singnlarity
at the point where y, vanishes. This raises the problem of enambiguous selection of i, and
i#; at the singularity. The feasibility of constructing a unique solution for the Lagrange
multipliers can be inferred from the boundary conditions (1.6) for the system (1.1}, from
the terms outside the integral sign at the points a, b and 2* in the expression (2.4) and
from the character of the singularity of the system (1.1) and (2.5).

Let us consider a solution of (1.1) passing through the node, when conditions (1.6)
hold at the ends a and b of the segment. Varying the right hand sides of (1.6), we obtain a
system of {n + 1) linear algebraic equations in 3”‘0, Oxg, Oypp and Sxp(k =1, ..., n)

(pixaxa+q)iz/k6yka:0 (z=a, i=1,.... 0}
q’;xarb —+-¢jyk6ykb:0 (x:b, I':r“*"'l..... n+1)

Solving this system for r values for 3y, and (n — 7 + 1) valaes of dy;; and inserting
the results into (2.4) we obtain, after reducing the like terms, (n ~ r) arbitrary variations
Oyyq for % = a and (r — 1) arbitrary variations 8y, for x = b. Equating the coefficients
preceding these variations to zero, we obtain (n — 1} boundary conditions necessary for
the integration of (2.5), (n ~ r) of these conditions referring to x = a, and the remaining
(r = 1) conditions referring to x = b. Equating to zero the coefficients preceding Bxa and
Oxy, we obtain the conditions defining the positions of the ends of the interval of integra-
tion. We can easily see, that the number of conditions is insufficient to integrate the
system (2.5).

Let us now counsider the solution of {1.1) passing through a saddle point. In this case
the conditions (1.6) hold at 6 and b, but j=r+ 1, ..., n — 1. Repeating the argument given
above we obtain, for (2.5), (n ~ r) conditions for x = a and (r + 1) conditions for x = b, i.e.
together (n + 1) conditions,

Let ns now introduce another variable 2 = 1,/y,. Then (2.5) can be written as

}‘l’ = yl_! ((Dm L fy; - }Ligim): gk’ = (Dy';; - pfﬂ..‘ - y'jgjﬂ.’.

(ihk=2,...,n) (3.1)
We can easily see that the singularity of the system (1.1) and (3.1) is defined by
f(l‘, Yir vi) =0, = Ov (Dm-_p'fyl_'— W85y = 0 (32)

Using the old variables we would find, that the last equation in (3.2) is g, = 0.

Since the right-hand sides of equations for the derivatives y} and pu} (f = 2, ..., n) are
finite near the singularity we find, that only first Egqs. of (1.1) and (8.1) ‘are essential for
investigation of the character of the singularity. Introducing differentiation with reapect
to t, we can write these equations in the form of an independent system, and linearizing
their right<hand sides near the singularity, we obtain
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Y= Fy B e+ foy) + 180 Ax
z, = Ay, b, =ody + BAz — f, Ap

Where Ay,, Ax and A are the increments of the corresponding quantities near the
singularity, while a and Sare the coefficients of expansion of the numerstor of the right-
hand side of the equation for 4" Numerically, @ and Sare not sssential.

Eigenvalues of the singularity are, in this case, given by

{'—' A (fm _ ;?) - (fx ”+' fvivi’ + fngj)] (-— fyz - A’) = O (3-3)
from which we find thet A, and A, are determined by (1.4), while
Ay =—f, (3.4)

Solution for Ay,, Ax and Ay has the following form near the singularity:

Apy= + c;h; exp Ayl +1c3hg €XP Aqt, Az = ¢; exp Ml -+ o2 eXp Aot
Ap = et (B — M) (y + £, exp Mt + g (B — A@)(hy + £, )" oxp Ayt + ¢ oxp A2

where ¢,, ¢, and ¢; are arbitrary constants,
If the singularity of (1.1) is a node, then A, <0, A, < 0'and A, > Ay, Then (3.4) yields

A >0,

On approaching the singnlarity {t + «), we have
Ayinexp M2, Ax ~ exp Mz, Mt~ exp Mgt
Behavior of i, = uy, is governed ;)y the term exp' {Ay + Ayt Since A, 4 Ay > 0, we bave
iy »oo, when £ » o0,
This means that the singularity given by (3.2) is a generalized saddle point and g, =0
corresponds to continnous solutions passing through it.

1f the system{1.1)has a saddle point as a singularity, then A, > 0 and A, <0. Suppose

that at the same time f < 0. Then {3.4) ylelds A; > 0. In this case we‘hwe, on approaching
the singularity as ¢ -+ ,Z}

Ay, ~ exp Ay, Az ~ exp Myt, Ap ~ exp Ayt (e, = 0)

Since the behavior of i, is governed by the term exp (A, + Ay)f, Ay + Ay <O implies that
ity + 0 as ¢ -+ co. On approaching the singularity as ¢ » ~ o, we have

Ay, ~ exp Mt, Az ~exp Ml, Ap ~expMt or explryt (¢ =0)

Then H; ~ eXP 2Ay £ or exp (A, + At, hence i1, + 0 as ¢ + — oo, Thus we see
that, if the singularity of (1.1) is a node then pi; + o0 on approaching the aingularity, while
in the case of a saddle point we have i, » 0,

Let us now consider the term of(2.4) outside the integral sign, when x = 2%,

Since the singalar point of {1.1) lies on a {n ~ 1)-dimensional surface, Syi. (j=2,.m
are arbitrary and consequently ;Lj (x*_) = i () (G=2,.., n).

We shall take a smail area around the singularity of {1.1) and draw within it a straight
line perpendicular to the x-axis and lying in the plane containing all integral curves of the
system (1.1). Then, in the case of s node, this straight line will be intersected by a set of
integral curves pasaing through the singularity and the guantity ¥, will vary within the
limits 0 < |y;:|<C|Ag | &, where ¢ is the radius of the area and A, is given by (1.4)
where the root should be taken with the minus sign. Consequently, if within the g-neighbor~
hood of the singularity 0 << |y, | << | A, | &, then 8y, +* is arbitrary and

Py (2 %) =y (z:*) =0 (3.5
i.e. the Lagrange multipliers should be continuvous when pasaing through the singnlarity.
Condition {3.5) supplementn the conditions for integration of the system {2.5), when the
Egs. {1.1) have the node as & singnlarity.
If 5, reaches its limit value within the g-neighborhood, then the supplementary condition
for integration of (2.5) will be
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ne*te)=+1Mle (3.6)

In this case the quantities i1 (T+*) will be arbitrary. When (3.6) holds, it is
advisable to take into consideration the flows with shock waves or with y; of constant sign,
since an extremum may occur within this class of flows,

If the singularity defined by (1.2) is a saddle point, we have one integral carve with
y{{x*)> 0 and one with y; (x*) <0 passing through the singnlarity, and we then have
8y:2* = 0. Consequently the quantities i1, (x_#*) and y, (x,*) are arbitrary. We know
however, from actual analysis, that it, + 0 as x + x* when the singularity is a saddle point.
Thus the condition of continuity of the Lagrange multipliers is, in this case, satisfied
automatically,

Let us now assume that the optimal controls suffer a discontinuity at the point at
which y, vanishes. In this case the boundary conditions for integrating (2.5) can be chosen
analogously to the case of the saddle point type singularity, since two integral curves of
(1.1) pass through x = 2* where y, =0, and they have y; + f o0 as ; + 0. From (2.5} it
follows that, when y; + 0 (x » 2*),

B =c¢ (z— z¥)" 3.7
where c is an arbitrary constant, Expression (3.7) was obtained taking into account the
fact, that

() = 2f (z.*) (z — z*)

as x -» x*,
Thus &, » 0 as x - x*, i.e. the Lagrange multipliers are in this case continuous.

4. In agreement with the choice of Lagrange multipliers, the first variation is

® [ p'lfvi \
81 == §1 = ) 1(‘1‘)‘.{ e —?r — p‘;igjz‘i) &’i} de + {® (g )— (2] (xd+) — (4.1)
a

— B T Iy (2 ) — v (2 )]} 024 i=1...m =2 ..,8 s5=1,,.,n)

Necessary conditions for an extremum can be obtained by the usual methods, with
{(2.2) taken into account.

If the controls are optimal, then any admissible variation will only lead to the de-
crease in the value of J, i.e. 8/ < 0. Assuming that the admisaible variations & v; can
have any sign within the intervals Iv;[ < ¥;, negative on v; =+ V; and positive on

v; == ¥;, we obtain the necessary conditions for the maximum of J,
Fi= O — aly [0 — g, = 0 (o, 1<V i=1,...,m
, 45
F>0 (0;=V), F, <0 (0,=—V) (1’:2,...,n) (%.2)

and these conditions define the optimal controls.
Position of the point d at which the controls suffer a discontinuity, is given by the
condition

D (24.) — @ (2q,) — Ps @)V (Ta) — ¥ (g,)] =0 (s=1,...,n)

Other terms outside the integral may appear in (4.1). They will be the outcome of the
fact that some of the quantities y., and y;3 as well as the length of the interval of
integration, may serve as controls. Optimal conditions for Ykq and yip will replace some
of the conditions (1.6} as boundary conditions for (1.1), and the optimal conditions at a
and b will define the position of the ends of the interval of integration.

5. As an example, we shall consider the problem of optimizing the flow in the
channel of a magnetohydrodynamic electric power generator, The statement and the solution
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of this problem for subsonic and supersonic flows and the flows with shock waves, are
given in [4 and 5]. Here we solve the problem under the assumptions of {4], but the flows
considered will be transonic and passing through the velocity of sound at a singularity of
the nodal type, Qualitative analysis {3} and numerical computation have shown, that such
a flow is possible in a diverging channel when the interaction parameter A> 1.5, Here
A= 0,°B,°1° | (p° V 2hs°) where p° is the density, s is the enthalpy, 0 is the
conductivity of gas in the receiver while B ® and [? represent the typical magnetic field
and the typical length respectively.

One-dimensional steady flow of a nonviscous, non-heat-conducting perfect gas whose
electrical conductivity is ¢® in a plane channel of height 2y® and in the presence of an
external magnetic field B® (magnetic Reynolds numbers are assumed low), can be deacribed

by
Ly =puu' 4 p' 3 AsB (uB —— —;;)—): 0
b Cpunh
Ly = Lu-g; g7 P+ :}—H - &og {azB — %) == 3.4}

Ly = (puy) == 0
Notation used in [4] is adopted here. Lot us put o= 1. Then (5.1) can be reduced to the
form

M M 24 (x— 1) M2
dr =Ty 1— M X (5.2)

xL%M;yA(qulMuB—%wi 1 uM*? tp)__%}

cu v % 2+ (w—1)y My
du uM’ x— ) ApM2*(uB —9/y) ’
MU T e =) Mg~ a2 in—1) M (e = puy)

which is more suitable for obtaining a numerical solution of the problem and where ¥
denotes the Mach number,
Singular points of (5.2) in the xuM-space lie on the plane M =1 and on the line given
by
cu?y’

/ P x—1¢
®yA %ﬁB—?) (RB— " E;)m——-:[), M—=1

When A 2> 1.5, one of the branches of this line consists of the nodes with negative
characteristic directions [3],

Assuming that the flow is supersonic at the inlet and that the inlet cross section y?
of the channel] is fixed, we can determine u; and M, at x = 0, by considering the flow for
x <0 and assuming it known. The quantity 4, (or M) can, in this case, be assigned
arbitrary values within some limits imposed by the change of the form of the channel when
% < 0. Under the open cycle working condition of the generator, the pressure p_ of the
medium into which the fluid emerges, is assumed known at the oatlet cross ssction. Thas
we have, for (5.2),

u=u, M=M, (z=0), p=cu/aM¥=p, (z=1z) (5.3)
The functions and parameters y (2), @ (2), B (), Uqs: Do and % the length of the
channel act as controls.
The power available from the unit width of the generator
*b
— 9
N= ; A(p(uBu- y)dw
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can be taken as the optimizing functional, and the optimal controls should satisfy the
constraints formulated in [4] (see Formulas (1.3), (1.6) and (1.8)).
We shall write the auxilliary functional {4] in the form

*p
I= \ [Afv (uB - %) + WLy 4 pols 4 PsLs] dx
0

Necessary conditions for the maximum of / obtained in [4] for o = 1, are valid for the
present problem. The latter differs from the earlier problems only in the formulation of the
boundary conditions for (5.2) and in the equations used to obtain the Lagrange maltipliers,

Since the singular point of (5.2) is a node, then for the integration of the system

dps _ [AB@MB+ @+ @)+ ey /vl (x— )M dp % dp,
dr — (1 —M%Hcu VAT a1y G4

one of the boundary condition is obtained from the requirement that the Lagrange multipliers
are continuous at the singular point

AB (B + 1@ + @) + pyey’ /2 =0 (z = a¥) (5.5)

while the second condition is obtained, as in [4], by considering the terms ountside the
integral sign for x = x, in the expreasion for 51

= — (/% —1)uyp, (¥ =) (5.8)

Factor , is not substantial in the present problem.

Optimal values of B (z), ¥ (), ® = const, p,, and xp were found by numerical methods
for 6 =1, x=5/;, and 1.5 £ A< 2. The largest admissible angle of inclination of the
channel wall to the x-axis was chosen as 20° the ratic I°/y® = 10 and the maximum height
of the channel was Y = 4.64. No constraints were imposed on ¢ . Velocity of the gas at the
inlet was assumed equal to the sound velocity.

Optimal value of ¢ = const can be found from the formula (3.12) of [4], or from the
equivalent differential equation

d/dz = A[(1 + ) (uB — 0/ ) — (4B + e + @) vl 5.7)

with the boundary conditions
X(0) =% (z) =0 (5.8)

Choice of ¢ leads to fulfilment of one of these
conditions, Thus we must solve the boundary value
problem for five differential Eqgs. {5.2), (5.4) and (5.7)
with the following boundary conditions: {5.3), (5.5}, (5.6)
and {5.8),

) . The equations were integrated by the Runge ~ Kutta

05 ! method from % =0 to x = 2* and from x = 2 to x = »*,
and x was taken as the independent variable only when
Fig. 1 [M?| <1.When |M’| > 1, then M was used as the inde-

pendent variable.

The lacting boundary conditions g, (0) and g, (0) required when integrating from 0 to x*

and p, (Zk) with p, (x5) when integrating from xj to x* as well as @, were selected by means

of approximations wi& respect to five parameters and using the Newton’s method.

Equations (5.4) were linearized in the small neighbourhood of the singular point, and
the choice of this particular method of integration was dictated by the necessity of obtain.
ing a stable solution near the node.

Computations have shown that ¥ (z) = kz + 1, (A = tg20°I°/ y,°), and %=1 are
optimal, while optimal B (x) consists of the segments of the boundary extremum B = ]

a7t

a5
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together with the segments of the two-sided extremum. Fig. 1 shows the optimal B (x) for
A=2.

Wehave also computed, for comparison, the power of the generator at B = 1 with the
remaining optimal parameters. We found, that the power of the generator at the optimal
value of B (x) exceeds that at B =1 (A =2) by 8.3 %.

The author thanks A.G. Kulikovskii for valuable advice.
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